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Please send any questions/comments/corrections to hhao@berkeley.edu.

1 Series Basics

Definition 1.1. A series is an “infinite sum”
∑∞

n=1 an for some terms an. We may begin
the summation at any index, but n = 0 or n = 1 are preferred. When the initial index is
obvious from context (or if it doesn’t matter), I may be lazy and just write

∑
an instead.

The N th partial sum of a series
∑∞

n=1 an (or
∑∞

n=0 an) is the finite sum SN :=
∑N

n=1 an (or

SN :=
∑N

n=0 an).

Definition 1.2. We say that a series
∑
an converges if its sequence of partial sums {SN}

converges, and then we say that the sum of the sequence is the limit of the SN . Otherwise, the
series diverges. If limN→∞ SN is ±∞, then we may say that the series diverges to ±∞. We
often write

∑
an <∞ if the series converges, and write

∑
an = ±∞ if the series diverges to

±∞. If the series converges to S, then the Nth (absolute) error is defined as EN = |S−SN |.

Note that the (convergence/divergence) behavior of a series only depends on the “tail”.
That is, if

∑N
n=1 an converges, then so do

∑N
n=100 an,

∑N
n=1000000 an, etc., and vice versa.

Example 1.3. Here are some examples of various series:

1. A geometric series is a series of the form
∑∞

n=0 ar
n = a+ ar+ ar2 + . . .. a is the initial

term and r is the common ratio. This series converges exactly when |r| < 1, in which
case it has sum a

1−r . For example, the series 3−3 · (1/2)2 + 3 · (1/2)4−3 · (1/2)6 + . . . is

geometric with a = 3 and r = −((1/2)2), so it converges and has sum 3
1+(1/4)

= 12/5.

2. The harmonic series is the series
∑∞

n=1 1/n, and it diverges to ∞.

3. An alternating series has terms that alternate sign, such as the alternating harmonic
series 1− 1/2 + 1/3− 1/4 + . . .. Unlike the harmonic series, this series converges.

4. A p-series is a series of the form
∑∞

n=1
1
np . This converges when p > 1, and diverges

otherwise. Note that the p = 1 case is the harmonic series.

5. We can generalize the above to series of the form
∑∞

n=3
1

na(logn)b
. This converges when

a > 1 or when a = 1 and b > 1, and diverges otherwise.

6. We can consider any finite sum as a series by just adding infinitely many 0 terms. For
instance, 1 + 2 + 3 + 4 is a series 1 + 2 + 3 + 4 + 0 + 0 + . . ..

7. The series
∑∞

n=1 n obviously diverges to ∞ (the partial sums keep getting larger and
larger).
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8. Note that it is possible for a series to diverge, but not to ±∞. Consider the series∑∞
n=0(−1)n = 1−1+1−1+ . . .; the partial sums alternate between 1 and 0, so neither

converge nor diverge to ∞.

Notice that because the convergence of a series depends on its partial sums, there is a
priori no reason that the sum of a series should stay the same if its terms are rearranged
(because the sequence of partial sums will change). Consider the following example:

Example 1.4. Recall that the alternating harmonic series 1−1/2+1/3−1/4+. . . converges;
it in fact converges to log(2). Suppose that we rearrange the series as follows:(

1

1
− 1

2
− 1

4

)
+

(
1

3
− 1

6
− 1

8

)
+

(
1

5
− 1

10
− 1

12

)
+

(
1

7
− 1

14
− 1

16

)
+ . . . .

If we ignore the parentheses, we see that the terms of this new series are indeed the terms of
the original series, but in a different order. But looking at the first two terms in each triplet
indicated by the parentheses, the series equals(

1

2
− 1

4

)
+

(
1

6
− 1

8

)
+

(
1

10
− 1

12

)
+

(
1

14
− 1

16

)
+. . . =

1

2

(
1− 1

2
+

1

3
− 1

4
+ . . .

)
=

1

2
log(2).

So we’ve added the terms in a different order, but got half of the original sum.

This example shows why it’s important to make the following definition:

Definition 1.5. A series
∑
an is absolutely convergent if

∑
|an| converges. If

∑
an converges

but
∑
|an| diverges, then the series is only conditionally convergent.

Of course, if a series with nonnegative terms converges, then it is absolutely convergent.
Absolutely convergent series are important for two reasons:

Theorem 1.6. If a series is absolutely convergent, then it is convergent.

This is useful because many of the convergence tests we will see later only work if all
terms are nonnegative. Of course, a series of the form

∑
|an| has only nonnegative terms, so

such tests will apply to this series even if they don’t apply to the original series
∑
an.

Theorem 1.7 (Riemann Rearrangement Theorem). If a series
∑
an is absolutely conver-

gent and has sum S, then any rearrangement of the series also converges and has sum S.
Conversely, if the series is only conditionally convergent, then this is not true.

Therefore it is useful to deal with absolutely convergent series, so that we may rearrange
their terms at will. Luckily, most of the convergence tests we will use also apply to absolute
convergence.

We can also add and scale series: if
∑
an and

∑
bn are convergent series, and c is any

real number, then
∑

(an + bn) and
∑
can are convergent and equal

∑
an +

∑
bn and c

∑
an,

respectively. Conversely, if
∑
an diverges, then so does

∑
can for any scalar c 6= 0 (why is

the corresponding statement for sums of two series not true?).
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2 Convergence Tests

It is intuitively obvious that if a series
∑
an converges, then the terms an must converge to

0—the idea is that the series cannot converge if the an are “large”, since then the partial
sums will be going to ∞ or jumping around. Therefore:

Theorem 2.1. If the terms an do not converge to 0, then the series
∑
an diverges.

Note that the converse is not true: consider the harmonic series.
As with improper integrals, we have direct comparison tests:

Theorem 2.2. Suppose two series
∑
an and

∑
bn have nonnegative terms, and an ≤ bn for

all n. Then if
∑
bn converges,

∑
an converges as well. Also, if

∑
an diverges, then

∑
bn

diverges as well.

We will usually compare to a geometric series or p-series. For instance,
∑ 2 sin2(n)

n2+1
con-

verges upon being compared to
∑

2
n2 <∞.

Even better is the limit comparison test :

Theorem 2.3. Suppose two series
∑
an and

∑
bn have positive terms, and suppose limn→∞

an
bn

converges to some positive constant c (in particular, c 6= 0,∞). Then the series
∑
an and∑

bn have the same behavior: they both converge or both diverge.

This theorem essentially generalizes the “hierarchy of functions” heuristic that we’ve seen
before—it allows us to look at the “dominant” part of the terms that occur in the series,
and ignore all other terms. Here is a typical application:

Example 2.4. The series
∑∞

n=1
n2+4n+(−1)n

(1/2)n4+100000 log(x)−e−x−27 converges via a limit comparison

test with the convergent p-series
∑

n=1
1
n2 . Indeed, the limit limn→∞

n4+4n3+(−1)nn2

(1/2)n4+100000 log(x)−e−x−27
is 1

2
, since the dominant term in the numerator is n4, and the dominant term in the denom-

inator is (1/2)n4 (the other terms are lower-degree polynomials, logarithms, or bounded).

The ratio and root tests are also particularly important, because they do not require the
terms of the series to be nonnegative.

Theorem 2.5. Suppose we are given a series
∑
an. Then if the limit limn→∞|an+1/an| exists

and equals C: if C < −1, then the series converges; if C = 1, the test is inconclusive; if
C > 1, the series diverges. The same statement is true with the preceding limit replaced by
the limit limn→∞|an|1/n.

Remark 2.6. Note that the ratio and root tests actually test for absolute convergence (make
sure you see why!).
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Remark 2.7. The root test is stronger than the ratio test, in the sense that any series that
we can analyze (i.e. determine convergence/divergence/inconclusive) using the ratio test, we
can also analyze using the root test to get the same result. On the other hand, the ratio test
is almost always easier to apply, so try to start with that one (unless it’s really obvious that
you can use the root test, such as when the terms an already are nth powers).

Example 2.8. The series
∑

n!
nn converges using the ratio test: we have∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)!nn

n!(n+ 1)n+1
=

(n+ 1)nn

(n+ 1)n+1
=

(
n

n+ 1

)n
=

(
n+ 1

n

)−n
=

1(
1 + 1

n

)n .
As n→∞, the denominator of the last fraction goes to e, so

∣∣∣an+1

an

∣∣∣ n→∞−−−→ e−1 < 1.

It is also possible to do this with the root test, but it is a lot harder.

Example 2.9. Note that “inconclusive” in the ratio (or root) test really means “inconclu-
sive”: if the limit C in the test is 1, the series could exhibit any type of behavior. For
instance,

∑
1
n2 has C = 1 and converges absolutely;

∑ (−1)n
n

has C = 1 and converges
conditionally;

∑
1
n

has C = 1 and diverges.

Finally, we discuss the integral and alternating series tests, which are useful in limited
situations.

Theorem 2.10. Suppose f : [1,∞) → R is continuous, positive and decreasing, and let
an = f(n). Then

∑∞
n=1 an is convergent exactly when

∫∞
1
f(x)dx is convergent. Also, the

Nth error EN satisfies ∫ ∞
N+1

f(x)dx ≤ EN ≤
∫ ∞
N

f(x)dx,

so the error is bounded by the tail of the integral.

For example, one can show that the p-series converges for p > 1 and diverges for 0 < p < 1
using the integral test.

Theorem 2.11. If the series
∑
an is alternating, then it converges if |an| decreases mono-

tonically to 0 (the latter condition meaning that limn→∞|an| = 0). Moreover, the Nth error
EN satisfies EN ≤ |bN+1|.

The application of the alternating series test is straightforward, but there are a few
caveats. First, keep in mind that the alternating theorem says nothing about divergence:
we do not give any conditions for an alternating series to be divergent. Second, note that
one can often disguise a series to be alternating, or vice-versa. For instance, the series∑∞

n=0 cos(nπ)e−n is alternating, since cos(nπ) is −1 if n is odd, and 1 if n is even. Conversely,

series like
∑∞

n=0
(−1)n cos(nπ)

en
are not alternating, even though they might appear to be.
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3 Power Series

Definition 3.1. A power series is a series of the form
∑
cn(x − a)n, where the cn are the

coefficients of the power series (as opposed to the terms, which are the cn(x − a)n). The
center of the series is a.

For a power series
∑
cn(x−a)n, we want to consider its convergence/divergence behavior

as x varies (but the cn and a are fixed). It is clear that when x = a, the power series converges
and equals 0. For other x, the series may or may not converge. But we have the following
theorem:

Theorem 3.2. Every power series
∑
cn(x− a)n has a well-defined radius of convergence R:

that is, there is a unique R ≥ 0 (possibly R =∞) such that if |x− a| < R, then it converges
absolutely, and if |x− a| > R, then it diverges. In particular, the radius of convergence does
not tell us what happens when x = a−R or x = a+R.

In the special cases R = 0 and R =∞, we mean that the power series converges only if
x = a and that it converges for all real x, respectively.

Definition 3.3. The interval of convergence is the set of all x such that the power series∑
cn(x− a)n converges. By the above theorem, if the radius of convergence is R 6= 0 or ∞,

then the interval of convergence has the form (a−R, a+R), [a−R, a+R), (a−R, a+R],
or [a−R, a+R].

Notice that if x is strictly within the radius of convergence of a power series (i.e. not a
boundary point), then the series converges absolutely at x. This may no longer be true if x
is a boundary point.

Example 3.4. Consider the power series
∑∞

n=1
(−1)nxn
n4n

. We have
∣∣∣an+1

an

∣∣∣ = |x|n
4(n+1)

, which

converges to |x|
4

. The ratio test tells us that the power series converges absolutely if |x| < 4,
and diverges if |x| > 4. Therefore R = 4, and we need to check the endpoints ±4. At

x = 4, the series is
∑∞

n=1
(−1)n
n

, which converges. At x = −4, the series is
∑∞

n=1
1
n
, which

diverges. Therefore the interval of convergence is (−4, 4]. Also, notice that the series does
not converge absolutely at x = 4.

The technique shown in the above example is typical: we take the relevant limit in the
ratio or root test, and determine for which x that limit is strictly less than 1 or strictly greater
than 1. For x such that the limit equals exactly 1, we know those will be the endpoints of
our radius of convergence; those need to be checked by hand using a different test, such as
(limit) comparison, alternating series, etc. Along these lines, there is the following theorem:

Theorem 3.5 (Cauchy-Hadamard). Suppose the coefficients of the power series
∑∞

n=0 cn(x−
a)n satisfy limn→∞|cn|1/n = L, where L is a nonnegative real number or∞. Then the radius
of convergence of the power series is R = 1

L
(by convention, if L = 0 then R = ∞, and if

L =∞ then R = 0).
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Moreover, we can attempt to describe the radius of convergence of a sum of two power
series. Suppose we have two power series

∑∞
n=0 cnx

n and
∑∞

n=0 dnx
n with radii of convergence

Rc and Rd, respectively (possibly ∞). Then the power series
∑∞

n=0(cn + dn)xn has radius
of convergence Rcd satisfying Rcd ≥ min(Rc, Rd), with equality holding if Rc and Rd are
distinct. On the other hand, if Ra = Rb, then it is possible for Rcd to be strictly greater than
min(Rc, Rd). (consider

∑∞
n=0−xn and

∑∞
n=0(1 + (1/2)n)xn; both of these series have radius

of convergence 1, but their sum
∑∞

n=0(1/2)nxn has radius of convergence 2 > min(1, 1)).
The importance of the interval of convergence is as follows: we can consider a power series

as a function of x within the interval of convergence. Here is a basic example: consider the
power series

∑∞
n=0 x

n. This is a power series with interval of convergence (−1, 1), but also
a geometric series with sum 1

1−x on that interval. We may say that the power series gives a

(power series) representation of 1
1−x on the interval of convergence.

Definition 3.6. If a function f(x) equals
∑
cn(x − a)n on the interval of convergence of

the power series, we say the function is a representation of (or just “is equal to”) the power
series centered, or expanded, at a.

This is extremely useful, because we can now switch between different representations of
a function (its “formula” versus its series expansion). Moreover, the series representation of
a function expanded at x = a is unique (one has to give some more details about what this
means, but let’s forget about that for now).

We can also differentiate and integrate power series term-by-term: the derivative of∑
cn(x− a)n is simply

∑
cn

d
dx

(x− a)n, and similarly, the integral is C +
∑
cn
∫

(x− a)ndx.
Moreover, the radius of convergence stays the same (as the radius of convergence of the
original power series) if we perform term-by-term differentiation or integration.

Example 3.7. The integral of 1
1−x10 , which is hard to do analytically, becomes∫

1

1− x10
dx =

∫ ∑
n=0

x10ndx = C +
∑
n=0

x10n+1

10n+ 1
.

The radius of convergence of the resulting power series is still 1, because that is the radius
of convergence of the original power series.

Example 3.8. We can find a series representation of log(1 + x) expanded at x = 0: since
log(1 + x) is an indefinite integral of 1

1−x =
∑∞

n=0(−1)nxn, we have

log(1 + x) = C +
∞∑
n=0

(−1)nxn+1

n+ 1
= C +

∞∑
n=1

(−1)n−1xn

n
.

To find what C is, we can just plug in the center point x = 0; the left-hand side is log(1) = 0,

while the right hand side is just C. So C must be 0, and thus log(1 + x) =
∑∞

n=1
(−1)n−1xn

n
.

You can check directly, or via the ratio test, that this series has radius of convergence 1.
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Finally, this is a useful theorem that allows you to skip a lot of the work for finding radius
of convergence of a power series, if you know that the power series represesents a function
f(x):

Theorem 3.9. In “nice” cases (such as anything you’ll encounter in this class), the radius
of convergence of a power series centered at a is equal to the distance from a to the nearest
complex(!) singularity of the function f defined by the power series. By a singularity at
c, we mean that limx→c f(x) is ∞ or −∞, so in particular, removable discontinuities don’t
count.

Example 3.10. In the previous example, we don’t even need to know the power series of
log(1 + x) at 0 to know that it has radius of convergence 1. This is because log(1 + x) has
a singularity at −1 (as limx→−1+ log(1 + x) = −∞), and that is the nearest singularity to 0,
so the distance between 0 and the nearest singularity is 1.

Example 3.11. Consider the power series 1−22x2+24x4−26x6+ . . ., centered at 0. Via the
ratio or root test, we can see that the radius of convergence is R = 1

2
. On the other hand,

this power series is a geometric series that represents the function f(x) = 1
1+(2x)2

whenenver

it converges. The singularities of f occur when its denominator 1+(2x)2 is 0, which happens
when x = i

2
of x = − i

2
. The distance from 0 to either i

2
or − i

2
is 1

2
, the same as the radius

of convergence of the power series.
Notice that even though f(x) has no real singularities, the radius of convergence is not∞.

This shows that we must also consider complex singularities when applying this heuristic.

Example 3.12. Consider the power series
∑∞

n=0 cnx
n with coefficients defined recursively:

c0 = 0, c1 = 1, and cn = cn−1+cn−2 for n ≥ 2. Unless you already know the limit limn→∞
cn+1

cn
,

it would be impossible to find the radius of convergence using methods involving the ratio
test. So we need an alternative approach.

Suppose the series represents a well-defined function f(x). Then

x2f(x) =
∞∑
n=0

cnx
n+2 =

∞∑
n=2

cn−2x
n,

and

xf(x) =
∞∑
n=0

cnx
n+1 =

∞∑
n=1

cn−1x
n = c0x+

∞∑
n=2

cn−1x
n.

Hence

x2f(x) + xf(x) = c0x+
∞∑
n=2

(cn−1 + cn−2)x
n = c0x+

∞∑
n=2

cnx
n = c0x+ (f(x)− c1x− c0).
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Since we know that c0 = 0 and c1 = 1, we conclude that x2f(x) + fx(x) = f(x)−x, or upon
rearranging, f(x) = −x

x2+x−1 . The singularities of f occur when its denominator x2 + x− 1 is

0, which happens when x = 1+
√
5

2
of x = 1−

√
5

2
after solving the quadratic. The singularity

at 1−
√
5

2
is closer to the center 0 (because

∣∣∣1−√52

∣∣∣ = −1+
√
5

2
< 1+

√
5

2
=
∣∣∣1+√52

∣∣∣), so this is the

minimum distance from the center to a singularity of f . Therefore R =
∣∣∣1−√52

∣∣∣ =
√
5−1
2

.

4 Taylor Series

The most important example of power series are Taylor series, defined as follows:

Definition 4.1. Suppose f is an infinitely differentiable function (e.g. all the functions
you’ve seen in this class). The Taylor series of f at a is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n.

The nth Taylor coefficient is therefore cn = f (n)(a)
n!

. The N th Taylor polynomial is the Nth

partial sum TN(x) :=
∑N

n=0
f (n)(a)
n!

(x− a)n. A Maclaurin series is a Taylor series centered at
0.

Intuitively, the Nth Taylor polynomial is the “best Nth-degree polynomial approximation
to f(x) at a”. You can check for yourself that when N = 1, you recover the tangent line of
f at a. However, note that even though we say that the Taylor polynomials approximate f ,

there is no a priori reason why the series f (n)(a)
n!

(x− a)n should converge to f (locally near a
given x); in fact this is not always the case. If the series does converge to the true function
f on an open interval about any fixed x, we call f analytic.

To find a Taylor series expansion of f(x) at a, you just need to calculate all the derivatives
of f at a, and plug them into the definition. Alternatively, if you have a series representation
for f at a via other means (e.g. the series for log(1 + x) found in Example 3.8), by the
uniqueness of power series near a point, it follows that such a series must be the Taylor
series as well!

Remark 4.2. You should know the Taylor series at x = 0 for the common functions ex,
sin(x), cos(x), 1

1−x , log(1 + x), and arctan(x). You should also know the binomial series
expansion at x = 0:

(1 + x)k = 1 + kx+
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + . . . ,

valid for any real number k.
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Using uniqueness of power series expansions, we can also construct new Taylor series
from old ones. Here are some typical examples.

Example 4.3. Since the Taylor series of ex at x = 0 is 1 + x+ x2

2!
+ . . ., the Taylor series of

e−x
2

at x = 0 is 1− x2 + x4

2!
− x6

3!
+ . . ..

Example 4.4. Since the Taylor series of log(1 + x) at x = 0 is x − x2

2
+ x3

3
+ . . ., we can

compute the Taylor series of (x− 5) log(x− 4) at x = 5. Indeed, we have

(x−5) log(1+(x−5)) = (x−5)
∞∑
n=1

(−1)n−1(x− 5)n

n
=
∞∑
n=1

(−1)n−1(x− 5)n+1

n
=
∞∑
n=2

(−1)n(x− 5)n

n− 1
.

Example 4.5. Consider cos(x) arctan(x). We could find the first few terms of the Taylor
series at x = 0 by repeated differentiation, but that would be tedious and probably lead
to errors. However, since we know the Taylor series for cosine and arctan, we can multiply
them together:

cos(x) arctan(x) =

(
1− x2

2!
+
x4

4!
+ . . .

)(
x− x3

3
+
x5

5
+ . . .

)
= x+ x3

(
−1

3
− 1

2!

)
+ x5

(
1

5
+

1

2! · 3
+

1

4!

)
+ . . .

= x− 5x3

6
+

49x5

120
+ . . . .

Indeed, the only way to get a linear term is by multiplying 1 by x. We can’t get any quadratic
terms, and the only ways to get cubic terms are from 1 ·(−x3/3) and (−x2/2!) ·(x). We can’t
get any x4 terms, and the only ways to get x5 terms are from 1 · (x5/5), (−x2/2!) · (−x3/3),
and (x4/4!) · (x). This analysis can be continued indefinitely.

Example 4.6. Let’s compute the limit limx→0
cos(x3) arctan(x3)−x3

x9
. We can deduce as in the

above example that

cos(x3) arctan(x3) = x3 − 5x9

6
+

49x15

120
+ . . . .

Hence
cos(x3) arctan(x3)− x3

x9
= −5

6
+

49x6

120
+ . . . ,

where the ellipses represent higher-order terms. So the limit as x → 0 is −5
6
, as all higher-

order terms vanish (they involve positive powers of x, which goes to 0).
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4.1 Taylor Series Error Bounds

Since Taylor series are used as approximations, it is important to be able to give error bounds
for the approximation given by the Nth Taylor polynomial. The most precise theorem is as
follows:

Theorem 4.7 (Taylor Remainder Theorem). Suppose f is an infinitely differentiable func-
tion (e.g. all the functions you’ve seen in this class), and consider its Taylor series centered
at a. Then for any x and any N ≥ 0, we may write

f(x) = TN(x) +
f (N+1)(c)

(N + 1)!
(x− a)N+1

for some c in the open interval between x and a (so (x, a) if x < a, and (a, x) if x > a).

Remark 4.8. You can check for yourself that when N = 0, the above statement reduces to
the mean value theorem.

Corollary 4.9. The version of the Taylor Remainder Theorem that you might have seen is
as follows: use the same notation as in Theorem 4.7, and let EN(x) be the absolute error
between the original function and the Nth Taylor polynomial evaluated at x, so EN(x) =
|f(x)−TN(x)|. Then if the magnitude of the (N+1)-st derivative of f , |f (N+1)(x)| is bounded
by some constant M for all x such that |x−a| ≤ d, then for such x, EN(x) ≤ M

(N+1)!
|x−a|N+1.

This statement follows from Theorem 4.7 (make sure you see why).

Here are some typical applications of this error-bounding theorem.

Example 4.10. We will find how large N has to be such that the Nth Taylor approximation
of e0.2 is within 10−10 of the true value. Using the fact that ex =

∑∞
n=0

xn

n!
expanded at 0,

and the fact that dN+1

dxN+1 (ex) = ex is bounded by M := e0.2 on (0, 0.2), we simply need to find
the smallest possible positive integer N such that

e0.2

(N + 1)!
|0.2− 0|N+1 =

e0.2

(N + 1)!
· 0.2N+1

is less than 10−10, since we would then have the chain of inequalities

|EN(0.2)| ≤ e0.2

(N + 1)!
· 0.2N+1 ≤ 10−10.

Using a calculator, we find that N = 7 is the smallest such N .
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Example 4.11. Using similar techniques, we can prove that f(x) = ex is analytic at any
real number a. To do this, we need to prove that on the interval Ia := (a − 1, a + 1) about
any real a, the Taylor series ex =

∑∞
n=0

ea

n!
(x− a)n at a converges to f on that interval. This

is equivalent to showing that the Nth absolute error EN(x) converges to 0 (as N →∞) for
any x in Ia.

Note that on Ia and any N ≥ 0, we have dN+1

dxN+1f(x) = ex, so that the (N + 1)-st
derivative is bounded by ea+1 on the interval. Therefore for x in Ia, the Nth absolute error
EN(x) satisfies

EN(x) ≤ ea+1

(N + 1)!
|x− a|N+1 ≤ ea+1

(N + 1)!
,

because |x − a| ≤ 1. But as N → ∞, ea+1

(N+1)!
converges to 0, so by the squeeze rule,

EN(x)
N→∞−−−→ 0 as well, which is what we wanted to show.
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